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The problem is to test whether the frequency of random events (e.g., DSIF
equipment failures) is at a nominally prescribed value. When the actual fre-
quency is higher, a determination of this fact is to be made as quickly as possible.
A test based on sequential maximum likelihood ratio methods is developed and
approximations of its performance characteristics are derived. Results of Monte
Carlo sampling demonstrate that these approximations are accurate and that high
statistical efficiency is attained over a broad range of possible higher frequencies.
Some applications to reliability and inventory policies for the DSIF are indicated.

I. Introduction

If X,, X., - - - are observed times between random events,
then the appropriate model assumes they are independent
and identically distributed random variables with a prob-
ability density function of the exponential form

re e x>0

The parameter A is identified as the (average) frequency
of events per unit time. In the DSIF, this model is ap-
propriate for both equipment failures and inventory de-
mands. Reliability and inventory policies must depend
heavily upon nominal A-values estimated from available
data. Not only are these values subject to error, but also
the underlying A-values themselves are subject to change.
Systematic techniques are required for checking whether
nominally prescribed A-values are exceeded. The follow-
ing examples of specific applications illustrate the gen-
eral pattern:
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(1) Test inventory demand experience periodically to
determine whether minimum stockage levels are
sufficient.

(2) Test demand rates of an individual facility to see
if they are in line with the rates in other facilities.

(8) Check the performance of repair facilities by test-
ing the frequency of repeated failures of repaired
parts.

(4) Compare the reliability performance of an indi-
vidual supplier’s parts against established reliability
levels.

The statistical problem arising in such situations is to
test the nominal value A = A, against a range of alterna-
tives, conveniently written Al + 6;) < A < A1 + 6,).
Here 6, is the smallest fractional increase in A worth
detecting, and 6, is the largest fractional increase for
which high statistical efficiency is important (could be
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taken as + ). Since the problem is essentially unchanged
if X;,X,,"- are multiplied by a scale factor, it will be
assumed without loss of generality that A, = 1. When
A =1+ 6 the probability density function is

(1 + f)e-1+o x>0
fo(x) =

[ 0, x<0
The null and alternative hypotheses are, respectively,
H:0=0and K:0< 9, <6<,

In case 6, = 6,, it is well-known (Ref. 1) that a sequen-
tial probability ratio test (SPRT) is optimal in the sense
that it minimizes the expected sample sizes required
when § =0 and 6 = 6, subject to prescribed type I and
type II error probabilities, a and 8. In applications such
as reliability testing, however, it frequently is particu-
larly important to reject H quickly if 6 is much larger
than 6,, so that it is appropriate to choose 6, much larger
than 6, and to seek a test which comes reasonably close
to minimizing the expected sample sizes for all 6 in
[6:,6.]. In (Refs. 2 and 3) it is shown that sequential
likelihood ratio tests asymptotically minimize all expected
sample sizes as o, — 0.

The present paper is concerned with the “small sample”
properties of likelihood ratio tests for exponential dis-
tributions. Specifically, the tests for H versus K above
are of the following form. Stop and reject H at the first
n such that

max

6156502

10g< folXs) - fo(Xa)

_m> 2 logy, (y>1)

(1)

or equivalently
nlog (1 + é‘n) — ﬁnSn >logy

where S, =X, + -+ + X,, and é\n is the value of ¢ which
maximizes the likelihood function on [6,,6,] (Eqgs. 3 to 5);
stop and accept H at the first n such that

fou(X3)"fo,(Xa)

1
A h(K) | < 8e<0

log

that is,

nlog (1 +6,) — 6,5, <log ¢ (2)

JPL TECHNICAL REPORT 32-1526, VOL. V

The main problem is to determine how to choose y and ¢
to attain prescribed bounds, a and B, on type I and
type II error probabilities. The principal results in this
connection are Eqs. (7) and (25) and Table 2 of Sec-
tion 3. Several examples were investigated by Monte
Carlo methods and the formulas proved to be acceptably
accurate in all cases. The results are given in Table 3 of
Subsection III and examples indicating lower bounds on
the efficiency of the likelihood ratio tests are given in
Table 4.

A major part of the derivation of the approximate
formulas for error probabilities is the approximation in
Subsection II of the distribution of the “excess over the
boundary” or “overshoot” when Egs. (1) and (2) are
first satisfied. In the standard approximations to the error
probabilities and expected sample sizes of SPRTs, the
effects of this overshoot are ignored; but any reasonably
accurate approximation must take it into account, as the
results of Ref. 4 indicate. It is well-known that the excess
over the boundary in Eq. (2) is exponentially distributed
by virtue of the characteristic “memoryless” property of
the exponentially distributed X’s. The derivation of this
result is given in Subsection II. The distribution of excess
over the boundary in Eq. (1) when 8, = 4, (i.e, 6, = 6,)
is approximated by deriving the limit distribution as
log y— o, based on a result of S. C. Port (Ref. 5). This
limit distribution also leads to a natural approximation
to the excess in Eq. (1) in the general case.

A major simplification is effected in Subsection III by
studying the probability when § =0 that Eq. (1) ever
holds for any n. This differs from the probability, o, that
Eq. (1) occurs before Eq. (2) by at most a factor of
(1 — B), by virtue of the argument in the usual deriva-
tion of SPRT error approximations (Ref. 6). In typical
applications this factor is on the order of 0.95 and may
be neglected without serious harm. The approximations
to SPRT error probabilities given in Section 2 take into
account this small correction, but no attempt is made
to do this for likelihood ratio tests because the effect is
much more complicated than a simple factor and is dif-
ficult to determine.

A convenient description of the likelihood ratio de-
fined by Egs. (1) and (2) is the following: Perform the
SPRT of 6 = 0 versus 6 = 6, defined by the inequalities

logé < nlog (1+6,)—6 S, <logy, (3)

stopping to make the appropriate decision as soon as
either inequality is violated. In addition, whenever
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Sa/n < (1 + 6:)7 (so that b, = 0) reject H if
nlog (1l -+ 6,) — 6,5, > logy (4)

and whenever

S

P < (1+ 6,)

(1+6.)<
so that 1 + 57» = n/S,, reject H if

s, 1
ﬁ_log<s>21+ Oiy (5)

n n

(Note that Eq. (5) can hold when S,/n > 1, but H is not
rejected in this case.) The likelihood ratio test thus modi-
fies the SPRT of 6 = 0 versus § = 6, by rejecting 6 = 0
sooner when é‘n > 6,. For

log y

n> 9,

1+6,

(the approximate expected sample size of the SPRT when
6= 6,) it is routinely verified that neither Egs. (4) nor (5)
can hold unless the right-hand inequality of Eq. (3) is
violated. Thus for n this large, the statistician goes back
to performing an SPRT. Obviously, the usual discussions
of truncation apply (e.g., Ref. 6), and the effect of trunca-
tion on error probabilities is no greater than for the
SPRT. Other uses of likelihood ratio tests, such as for
testing composite H or minimizing expected sample
sizes over the region between H and K, are discussed
in Ref. 2. The results of Subsection III can be applied
in these cases also.

In the limiting case as 8- 0, one has what Herbert
Robbins has called an “open-ended test” of H: observa-
tions are terminated only if Eq. (1) is satisfied (and H is
rejected). The type I error probability, a, now represents
the probability of ever stopping when 6 = 0 (which is
approximated in Subsection III). Such a test (or a test
with very small B) may be called for if observations are
inexpensive or mandatory (perhaps for another use), and
if, for example, one is already acting as if the null
hypothesis were true. Examples of this situation are the
monitoring of repeated failures of repairable equipment
to determine eventual replacement, and the continuous
evaluation of failure data or test data on a product to
determine whether its acceptance or use should be dis-
continued (or subjected to more stringent evaluation).
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Il. Distribution of Excess Over the Boundary

In this section the case 6, = 6, (i.e., an SPRT) is con-
sidered throughout. Let N be the number of observations
required to terminate and consider first the excess over
the boundary when (2) occurs; that is, the quantity

= [log E - Nlog (1 + 61) + 6, S]\,‘_l] + 91 XN > 0

Now, conditioning on the value, say r, of the bracketed
quantity (which must be negative, or else stopping would
have occurred before N), and on the event N = n, the
distribution of the excess (if 6 =0) is that of r + 6,X,
given the latter is positive (X, being independent of
Xy, Xs1). By the “memoryless” property of the ex-
ponential distribution, the conditional distribution of
X, + 1/6, given it is positive is exponential, mean 1, for
every r and n; hence, when 6 = 0 the distribution of the
excess is exponential, mean 6, (i.e., that of 6,X;).

By Wald’s derivation of SPRT error approximations
(Ref. 6)

P, (decided=0) g
P, (decided=0) 1-«

:Eo[f"lN

N decide 8 = O:l

(6)

where fo, v/fov is the value of the likelihood ratio upon
stopping. Let

L.,=nlog(l+6,)—06,S,

Then Eq. (6) can be written

B
l—«

= E,[exp(Lx) | decide 6 = 0]

= ¢Eo[exp( — (log ¢ — Ly) )| decide 6 = 0]
=¢E,exp ( — 6.X,)

since the excess over the boundary, log ¢ — Ly, is dis-
tributed like 6,X,. By routine calculation

B ¢
1_(1_1+01 (7)

The analog of Eq. (6) is

Py(decided =6,)  « B fox
Py (decide6=¢,) 1—5 E., [felzv

decide ¢ = 01:|

(8)
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and it follows as above that

a

-8

=y E,, [exp( — (Ly — log y)) | decide 8 = 6,]
9)

The approximate formula (11) for a/(1 — 8) will be de-
rived from Eq. (9) by replacing the excess over the
boundary, Ly —log y, by R, a random variable whose
distribution is the limit distribution of Ly — log y as
log y = . A routine argument shows that this limit dis-
tribution does not_depend on log £ being always the

6,

Conditioning on the value of L,, we have

e(—x)=/x°°, (1—%>g(t>dt

since
Pol [LZ’L3’...>x|L1:t>x]:P91 [L1>L2>.'.>x_t]
which is just a limiting case of Eq. (7) with log y = +

(so that a = 0) and x — t = log ¢ The integral is easily
evaluated, yielding

el‘
1- , 0<x<log(l+84)
e —x) = 1+46
0, otherwise
Since
0,
E"l L1 = log (1 + 01) (—1+—01)-

the limiting distribution of the excess over the boundary,
Ly — log v, has density

S 1+6,—e
h(x) = (1+6,)log(1+6,) — 6

» 0<x<log(l+4,)

0 otherwise

>

(10)
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same as in the case log ¢ = — «, i.e., the usual one-sided
boundary in renewal theory.

By Theorem 3 of Ref. 5 the limit distribution of excess
over the boundary for cumulative sums of non-lattice
variables (e.g., the sequence {L,}) has density e( — x)/
E, L,, where

e( —x) =P, (L,Ly,-+> x) forx>0

and is zero for x < 0. The density function of L, =
log(1 + 6,) — 6,X, when 6 = ¢, is

§1+61exp(lza[t~log(l+0)]>, t <log(l+6)

t > log (1 + 6)

Therefore, the approximation derived from Eq. (9) is

8, — log (1 + 6,)
T+ 6)log(1F6)— 6,

(11)

a

1-8

~vy7 Eo, exp (— R) =y

where R has density h.

Combining Eqs. (7) and (11) leads to the approxi-
mations

l + 91 - 5
=GO A+ 6,) — ¢ (12)
and
A N}'G(01)(1+01—§)
S Ty i e e
where

(146 log(L + 6,) — 6,
Cl0) = TogT T 8,)

Relations (7) and (11) also yield approximations for
the expected sample sizes, based on Wald’s equation,
EL,-EN = ELy.
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(log(l + )~ 1%) Eo, N ~B (log ¢ — Eo, (6.X))) + (1 ) (log y + Es, R)

b, L
~_—5<log$— 1+01)+(1"B)<1°g7 T +6)logl 6,6

Similarly,

(log(1 + 6:) — 6,) ELN ~ (1 — a) (log ¢ — E«(6.X,))
+ a(log v+ E, R)

The value of E,; R does not come out of the above deriva-
tion. However, its effect is small, since it is multiplied
by a and is in any case bounded by zero and log(1 + 6,).
The latter value gives a smaller approximation (since
log (1 + 6,) — 6, is negative):

(log(1 + 8,) — 6,) E;N ~ (1 — a) (log &£ — 6,)
+ a(log y -+ log(1 + 6,) )
(15)

The approximations (12) to (15) are useful in Subsection
III for deriving similar approximations in the case of
likelihood ratio tests. For SPRTs, Refs. 4 and 7 give exact
error probabilities and expected sample sizes. However,
formulas (11) to (13) together with the values of G(6)*
in Table 2 of Subsection III are quite useful in obtaining
reasonably accurate approximations to the values of y
and ¢ needed to get prescribed o and 8 for SPRTs. The
following table gives some examples to illustrate the
degree of accuracy of the approximations (11) to (15).

lll. Approximate Error Probabilities of Likelihood
Ratio Tests

The type II error probabilities of the likelihood ratio
tests defined by Egs. (1) and (2) obviously attain a maxi-
mum, 3, at § = 6;. To approximate 8, note that the deriva-
tion of Egs. (6) and (7) applies, so that Eq. (7) holds with
o equal to the type I error probability of the likelihood
ratio test. The value of the factor (1 — «) in Eq. (7) can
be approximated using the principal result (25) of this
section, but the effect on the determination of 8 is small
in typical problems, so that g8~ £&/(1 + 6,).

To approximate a, an approximation to

a*:PO( max [nlog(1 + 6) — 6S,] > log y for some n)

6, 6<02
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%(1 + 6)[log(1 + 6,)]°

- 1> (14)

will suffice, since the ratio a/a* is at least 1 — g, as dis-
cussed in Subsection I. The inequality

max [nlog(l + 6) —4S,] >logy

is clearly equivalent to

S, < max [nlog(l—i—ﬂ) _ logy] (16)
01<6<e [

and differentiation of the bracketed quantity in Eq. (16)
shows that the maximum is attained at 6,, the solution of

= log (1 -+ 9;,) - m = I(a;,), say

if m <n <M, where m is the largest integer < (logy)/1(6,)
and M is the smallest integer > (log v)/I{6,). If
n < m the maximum is attained at 6, and if n > M it is
attained at 6,. Let N be the smallest n for which Eq. (16)
is satisfied (or oo if there is no n) and let N(6) for 4 > 0
be the smallest n (or « if there is no n) such that

s < nlog(1+6) logy

<L : (1)

If N = n, then since 8, maximizes the bracketed quant-
ity in Eq. (16), evidently Eq. (17) holds with 6 = 8,, so

that N (6,) < n and, in fact, N(4,) =n (N being <
N (8,) by virtue of 8, € [ 6, 6,]). Therefore, for all n

Py (N =n) < Po(N(8,) = n) (18)

If m =0, then 6, > 6, and the values of 8 in [6;, 6,]
play no role in the test since the maximum in Eq. (16)
is the same for every n if 6, is replaced by 6,. Thus,
there is no loss of generality in assuming that 6, < 8,, i.e.,

JPL TECHNICAL REPORT 32-1526, VOL. V



that m > 1. Since 6, = =06,=0, and By = Oy, =
= §,, it follows from Eq (18) that

N =n) <P, (N (6,) <m)
+ P, (M <N (8,) < )

+ ZPO (6,) = n)

n=m+1
(19)

Regarding n as a~continuous variable u on the interval
from (log y)/1(6.) ~ m to (logy)/I(6;) ~ M, with I(,)=
(log v)/u, one can approximate the last summation in
Eq. (19) by an integral, which yields the approximate
upper bound

log y logy
<
o = P0<N(02) < 1(02)) + P°<1(01) < N8, <
Tog Y/1(61) - (20)
+/ Po(N(6,) = u) du
Log Y/1(8)

(The event N(#,) = u makes sense only if u is an integer,
but a natural interpolation will come from the calcula-
tions which follow). A relation similar to Wald’s relation
(8), derivable by a similar “cancellation of densities”
argument (Ref. 6), is the following. For integer u,

= Er,lexp(—L,) [N(E) =u]  (21)

where L, = u log (1 + 6,) — §,S..

The random variable N(§,) is by definition the number
of observations of a one-sided SPRT of 6§ =0 versus
= 6,. This suggests the approximation

Ez, [exp(—L,) ]| N(6,) =u] ~ Ez, [exp(—logy — R(@;))]

=y Ex, exp(— R(),

where R(8,) has the limit distribution of excess over the
boundary derived in Subsection II (upon setting 6, = §,,).
Applying this approximation and Eq. (21),

Py(N(8,) = u)
P7(N(§,) = u) =y

u

(1+6,)log(1+8,)—4,

~1

(22)

An approximation to Ps, (N (6,) = u) is suggested by the
fact (Ref. 6) that when §, is true and v is large, N(4,) is
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approximately normally distributed with mean
(logy)/1(6,) = u and variance

v (e(5) oot
CEC) N

Taking 1/1/2= times the reciprocal of the standard devia-
tion as an approximation to the probability of the unit-
length interval centered on v,

1(6,)2 (1 + 8,)
V2x (log y)* 8,
18,) 1+,

Veu B

Pz, (N(B.) = u) ~

since

I(g;)l/z _
(log y)*

Combining with Eq. (22) yields

(log(1 + 8))

~ B
Py(N(B,) = u) ~ L =22 »
Y logl + )~ o .
7 _log (1 +8.)
B \/27r_u< b, > (23)

Similarly, the distribution of N(6,) when 6 = 6, is asymp-
totically normal with mean log y/I(6,), which suggests

1, 6. —log(l+4,)
Po(N(oz) S (log Y)/I(oz)) -~ §V (l + 02) log (1 ¥ 92) — 02

Using a similar approximation for P, (log v)/I(6;) < N(4,)
< ) and plugging Eq. (23) into Eq. (20),

) — log(1 + 6,)
I+ 0.)log(1 + 6) — 6,

—log(1+4,)
(1+6,)log(1+ 6,) — 01]

(log*/)/I(e;) a.
/ (1 B log(1 + 0u)) du
\/Z (logy) /I(e2) b
(24)

1
*277-

a

+

87



The change of variable x = log(1 + 4,) leads to
*Z5v (1 +6,)log(l+6) — 6,

—log (1 + 6,)
(1-+6,)log(l+86)— 01:|

Y _Vviogy VIOg‘/

+

log(1+63) e—z‘ et — 1 — x)
x 4 eT — 1)3/2

dx

log(1+61)

Let

B log(1+e) e~r<ez _ 1 _ x)
Q(6) —[ G e ®

0g{1.01)

Given v,,,0., the approximate upper bound on a*, Eq.
(25), and hence the approximate upper bound on o for
the likelihood ratio test determined by v,6,,6,, can be
written

7 (Gl + Gl + V—% (Q(6) — Q(6,)
(26)

Monte Carlo sampling was performed in five cases to
compare the approximate upper bound in Eq. (25) with
the observed frequency of type I errors. The results are
given in Table 3 with the tolerances in the last column
being the standard deviations of the observed frequen-
cies. All probabilities are expressed as percentages.

For obvious reasons, the Monte Carlo experiments
could not be used to determine the frequency with which
Eq. (16) holds for some n=12---. The experiments
were carried out for a likelihood ratio test which could
accept the null hypothesis (and thereby terminate the
sample sequence) as soon as Eq. (2) was satisfied. Values
of ¢ were chosen to ensure that the effect of these termi-
nations was small compared to the sampling errors. In
all but the second of the five cases in Table 3, the ob-
served frequencies were smaller than the approximate
upper bounds, and the agreement between the two would
be improved if the sample sequences were not terminated.

An analysis of the efficiencies of the likelihood ratio
tests is easy to make using a definition slightly different
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from the usual definition. The one-sided SPRT of 0
versus 6 defined by Eq. (17) has the optimality property
of minimizing E,N among all tests with a < @, its type I
error probability. The efficiency of a test with a =@ is
usually defined as the ratio E,N/E,N” < 1, where N’ is
the number of observations taken by the other test. But
Wald’s approximation for expected sample sizes (Ref. 6)
and Eq. (14) both indicate that E,N is very nearly pro-
portional to log o*. It is therefore reasonable (and, in
the present investigation, convenient) to define the effi-
ciency of a test with given a and E,N’ as the ratio
log o7'/log & where @ is the type I error probability of a
one-sided SPRT of 0 versus ¢ having E,N = E,N’.

For the likelihood ratio tests it is of interest to compute
these efficiencies for ¢'s ranging over [#,,6,]. This is an
“unfair” comparison in the sense that a single likelihood
ratio test, designed to perform well for all 6 in [6,,4,] is
compared for each 6 with the optimal test (an SPRT)
chosen especially for that 6. Nevertheless, the compari-
son is interesting as an indication of how great a price
is paid in loss of efficiency at one value of ¢ in order to
attain simultaneously “good” performance over a broad
range of ¢'s.

Let a denote the type T error probability of a given
likelihood ratio test. When 4, is true, the expected num-
ber of observations is by Eq. (1) no larger than that of a
one-sided SPRT of 0 versus 6, with the same boundary,
log y. Hence, a lower bound on the efficiency (as defined
above) is

log a-!

log a(6,)!

where a(6,) is the type I error probability of the SPRT
of 0 versus 6, with boundary log y. Similarly, define for
f in [01>02]

log ot
e*(6) = log a(8)
where a(8) is the type I error probability of the one-sided
SPRT of 0 versus 4 with boundary log y. Table 4 of
e*(8)’s was computed by using the approximate upper
bound (25) as a and approximating a(f) from Eq. (13) as
y1/G(8) (8 = 0). Since e*(§) was found to be nearly con-
stant over [6,,6,], decreasing slightly over the interval,
only the values of e*(4,) and e*(8,) are given.
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1IV. Conclusion Table 4 indicate, a test determined in this way will guar-

antee high statistical efficiency even if the range [6,,6.]

From Table 2 it is easy to determine the critical values  is broad. The application of these tests for DSIF relia-

v and ¢ needed to achieve prescribed error probabilities  bility and inventory policies along the lines in Subsec-
with a sequential likelihood ratio test. As the results in  tion I should be both practical and useful.
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Table 1. Comparison of operating characteristics of Table 3. Comparison of error probability approxi-

SPRTs with approximations (11) to {15} mations with Monte Carlo experiments
0 log v £ a*, % B, % EoN EIN Approxi- Observed
b 02 log v mation, % frequency, %
1.0 2.48 0.005 6.6 0.23 18.5 14.0
(6.6)* | (0.23) {(18.6) (14.0) 0.3 1 2.48 14.0 13.2 £ 1.
07 | 373 | 0.02 2.0 1.2 26.2 32.1 0.2 3 3.39 9.01 9.09 £ 0.91
(2.0) {1.2) (26.2) (32.1) 0.5 4 3.70 4,99 4,33 + 0.46
04 | 339 | 0.10 2.8 6.9 39.7 60.7 0.7 2 373 3.50 3.34 + 0.28
(2.8) (6.9) (39.8) (60.9) 0.3 1 5.31 1.00 0.83 + 0.14
0.3 2.48 0.10 71 7.1 59.0 69.8
~ 1 {7.0) (7.2) (59.4) (69.8)
2Actual values (in parentheses) were computed using the exact formulas Table 4. Approximate lower bounds on efficiency, %
in Ref. 7. The agreement is very good and gets better as log v increases
because the limit distribution of excess over the boundary is quickly
approached. 01 02 log v e*(61) e*(6s)
0.3 1 2.48 77 73
0.2 3 3.39 70 63
8—logl1 +6) g: 4 3.70 78 71
. 2 3.73 86 2
Table 2. Values of GIA[3 +Olog(1+6)—8 8
0.3 1 5.31 85 83

log (140) g (e" — 1 — x)
and Q(6) = et 1
'/I‘Og(l.ol) {x + e — 1)3/2 x

6 |G Qe 0 |G| Qe 8 | GO Qi)

0.02 | 0.993 | 0.971 | 0.26 | 0.926 | 4.396 | 0.70 | 0.838 | 5.501
0.03 | 0.990 |1.535 ) 0.27 | 0.923 | 4.442 | 0.72 | 0.835 | 5.529
0.04 | 0.987 |1.933 | 0.28 | 0.921 | 4.486 | 0.74 | 0.832 | 5.556
0.05 | 0.984 |2,239 | 0.29 | 0.919 | 4.528 | 0.76 | 0.829 [ 5.583
0.06 | 0.981 |2.488 | 0.30 | 0.916 | 4.568 | 0.78 | 0.826 | 5.608
0.07 | 0.978 |2.697 | 0.32 | 0.912 | 4.644 | 0.80 | 0.822 | 5.632
0.08 | 0.975 (2.877 | 0.34 | 0.907 | 4715 | 0.85 | 0.815 | 5.690
0.09 | 0.972 |3.035 | 0.36 | 0.903 | 4782 | 0.90 | 0.808 | 5.744
0.10 | 0.96%9 |3.175 | 0.38 | 0.898 |4.844 | 0.95 | 0.801 | 5794
0.11 | 0.966 [3.301 | 0.40 | 0.894 (4902 | 1.00 | 0.794 | 5.841
0.12 | 0.963 [3.416 | 0.42 | 0.890 | 4.958 | 1.1 0.782 | 5.926
0.13 | 0.960 |3.521 | 0.44 | 0.886 |5.010 | 1.2 0.770 | 6.001
0.14 | 0.957 |3.617 | 0.46 | 0.882 | 5.059 | 1.3 0.759 | 6.068
0.15} 0.954 (3,706 | 0.48 | 0.878 | 5.106 | 1.4 0.748 | 6.129
0.16 | 0.952 (3.789 | 0.50 | 0.874 | 5150 | 1.5 0.738 | 6.184
0.17 | 0.949 (3.867 | 0.52 | 0.870 | 5.192 | 1.6 0.729 | 6.234
0.18 | 0.946 {3.939 | 0.54 | 0.866 | 5233 | 1.8 0.711 | 6.323
0.19 | 0.944 | 4,008 | 0.56 | 0.862 | 5.271 | 2.0 0.696 | 6.399
0.20 | 0.941 | 4,072 | 0.58 | 0.859 | 5.308 | 2.5 0.662 | 6.549
0.21 | 0.938 | 4.133 | 0.60 | 0.855 | 5.344 | 3.0 0.634 | 6.662
0.22 | 0.936 |4.191 | 0.62 | 0.852 | 5.378 | 3.5 0.611 [ 6,751
0.23 | 0.933 | 4.246 | 0.64 | 0.848 | 5.410 | 4.0 0.591 | 6.823
0.24 | 0.931 [4.298 | 0.66 | 0.845 | 5442 | 4.5 0.573 | 6.884
0.25 | 0.928 | 4.348 | 0.68 | 0.841 | 5.472 | 5.0 0.558 | 6.935
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